
Package: mscstexta4r (via r-universe)
August 23, 2024

Type Package

Title R Client for the Microsoft Cognitive Services Text Analytics
REST API

Version 0.1.2

Maintainer Phil Ferriere <pferriere@hotmail.com>

Description R Client for the Microsoft Cognitive Services Text
Analytics REST API, including Sentiment Analysis, Topic
Detection, Language Detection, and Key Phrase Extraction. An
account MUST be registered at the Microsoft Cognitive Services
website <https://www.microsoft.com/cognitive-services/> in
order to obtain a (free) API key. Without an API key, this
package will not work properly.

License MIT + file LICENSE

URL https://github.com/philferriere/mscstexta4r

BugReports http://www.github.com/philferriere/mscstexta4r/issues

VignetteBuilder knitr

Imports methods, httr, jsonlite, pander, stringi, dplyr, utils

Suggests knitr, rmarkdown, testthat, mscsweblm4r

SystemRequirements A valid account MUST be registered with Microsoft's
Cognitive Services website
<https://www.microsoft.com/cognitive-services/> in order to
obtain a (free) API key. Without an API key, this package will
not work properly.

NeedsCompilation no

RoxygenNote 5.0.1

Repository https://philferriere.r-universe.dev

RemoteUrl https://github.com/philferriere/mscstexta4r

RemoteRef HEAD

RemoteSha a0df2977daa9ee7ca67a781d1403bafd0066ccb1

1

https://www.microsoft.com/cognitive-services/
https://github.com/philferriere/mscstexta4r
http://www.github.com/philferriere/mscstexta4r/issues

2 mscstexta4r

Contents
mscstexta4r . 2
texta . 5
textaDetectLanguages . 5
textaDetectTopics . 7
textaDetectTopicsStatus . 10
textaInit . 13
textaKeyPhrases . 14
textaSentiment . 16
textatopics . 19

Index 20

mscstexta4r R Client for the Microsoft Cognitive Services Text Analytics REST API

Description

mscstexta4r is a client/wrapper/interface for the Microsoft Cognitive Services (MSCS) Text An-
alytics (Text Analytics) REST API. To use this package, you MUST have a valid account with
https://www.microsoft.com/cognitive-services. Once you have an account, Microsoft will
provide you with a (free) API key you can use with this package.

The MSCS Text Analytics REST API

Microsoft Cognitive Services – formerly known as Project Oxford – are a set of APIs, SDKs and
services that developers can use to add AI features to their apps. Those features include emotion
and video detection; facial, speech and vision recognition; as well as speech and NLP.

The Text Analytics REST API provides tools for NLP and is documented at https://www.microsoft.
com/cognitive-services/en-us/text-analytics/documentation. This API supports the fol-
lowing operations:

• Sentiment analysis - Is a sentence or document generally positive or negative?
• Topic detection - What’s being discussed across a list of documents/reviews/articles?
• Language detection - What language is a document written in?
• Key talking points extraction - What’s being discussed in a single document?

mscstexta4r Functions

The following mscstexta4r core functions are used to wrap the MSCS Text Analytics REST API:

• Sentiment analysis - textaSentiment function
• Topic detection - textaDetectTopics and textaDetectTopicsStatus functions
• Language detection - textaDetectLanguages function
• Extraction of key talking points - textaKeyPhrases function

The textaInit configuration function is used to set the REST API URL and the private API key.
It needs to be called only once, after package load, or the core functions will not work properly.

https://www.microsoft.com/cognitive-services
https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation
https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation

mscstexta4r 3

Prerequisites

To use the mscstexta4r R package, you MUST have a valid account with Microsoft Cognitive
Services (see https://www.microsoft.com/cognitive-services/en-us/pricing for details).
Once you have an account, Microsoft will provide you with an API key listed under your subscrip-
tions. After you’ve configured mscstexta4r with your API key (as explained in the next section),
you will be able to call the Text Analytics REST API from R, up to your maximum number of
transactions per month and per minute.

Package Loading and Configuration

After loading the mscstexta4r package with the library() function, you must call the textaInit
before you can call any of the core mscstexta4r functions.

The textaInit configuration function will first check to see if the variable MSCS_TEXTANALYTICS_CONFIG_FILE
exists in the system environment. If it does, the package will use that as the path to the configuration
file.

If MSCS_TEXTANALYTICS_CONFIG_FILE doesn’t exist, it will look for the file .mscskeys.json
in the current user’s home directory (that’s ~/.mscskeys.json on Linux, and something like
C:/Users/Phil/Documents/.mscskeys.json on Windows). If the file is found, the package will
load the API key and URL from it.

If using a file, please make sure it has the following structure:

{
"textanalyticsurl": "https://westus.api.cognitive.microsoft.com/texta/analytics/v2.0/",
"textanalyticskey": "...MSCS Text Analytics API key goes here..."

}

If no configuration file is found, textaInit will attempt to pick up its configuration information
from two Sys env variables instead:

MSCS_TEXTANALYTICS_URL - the URL for the Text Analytics REST API.

MSCS_TEXTANALYTICS_KEY - your personal Text Analytics REST API key.

Synchronous vs Asynchronous Execution

All but ONE core text analytics functions execute exclusively in synchronous mode: textaDetectTopics
is the only function that can be executed either synchronously or asynchronously. Why? Because
topic detection is typically a "batch" operation meant to be performed on thousands of related doc-
uments (product reviews, research articles, etc.).

What’s the difference?

When textaDetectTopics executes synchronously, you must wait for it to finish before you can
move on to the next task. When textaDetectTopics executes asynchronously, you can move
on to something else before topic detection has completed. In the latter case, you will need to
call textaDetectTopicsStatus periodically yourself until the Microsoft Cognitive Services server
complete topic detection and results become available.

When to run which mode?

https://www.microsoft.com/cognitive-services/en-us/pricing

4 mscstexta4r

If you’re performing topic detection in batch mode (from an R script), we recommend using the
textaDetectTopics function in synchronous mode, in which case it will return only after topic
detection has completed.

IMPORTANT NOTE: If you’re calling textaDetectTopics in synchronous mode within the
R console REPL (interactive mode), it will appear as if the console has hanged. This is EX-
PECTED. The function hasn’t crashed. It is simply in "sleep mode", activating itself period-
ically and then going back to sleep, until the results have become available. In sleep mode,
even though it appears "stuck", textaDetectTopics doesn’t use any CPU resources. While
the function is operating in sleep mode, you WILL NOT be able to use the console before
the function completes. If you need to operate the console while topic detection is being per-
formed by the Microsoft Cognitive services servers, you should call textaDetectTopics in
asynchronous mode and then call textaDetectTopicsStatus yourself repeteadly afterwards,
until results are available.

S3 Objects of the Classes texta and textatopics

The sentiment analysis, language detection, and key talking points extraction functions of the msc-
stexta4r package return S3 objects of the class texta. The texta object exposes results collected
in a single dataframe, the REST API JSON response, and the original HTTP request.

The functions textaDetectTopics returns a S3 object of the class textatopics. The textatopics
object exposes formatted results using several dataframes (documents and their IDs, topics and their
IDs, which topics are assigned to which documents), the REST API JSON response (should you
care), and the HTTP request (mostly for debugging purposes).’

Error Handling

The MSCS Text Analytics API is a REST API. HTTP requests over a network and the Internet
can fail. Because of congestion, because the web site is down for maintenance, because of firewall
configuration issues, etc. There are many possible points of failure.

The API can also fail if you’ve exhausted your call volume quota or are exceeding the API calls
rate limit. Unfortunately, MSCS does not expose an API you can query to check if you’re about to
exceed your quota for instance. The only way you’ll know for sure is by looking at the error code
returned after an API call has failed.

To help with error handling, we recommend the systematic use of tryCatch() when calling mscs-
texta4r’s core functions. Its mechanism may appear a bit daunting at first, but it is well documented
at http://www.inside-r.org/r-doc/base/signalCondition. We use it in many of the code
examples.

Author(s)

Phil Ferriere <pferriere@hotmail.com>

http://www.inside-r.org/r-doc/base/signalCondition

texta 5

texta The texta object

Description

The texta object exposes formatted results, the REST API JSON response, and the HTTP request:

• result the results in data.frame format

• json the REST API JSON response

• request the HTTP request

Author(s)

Phil Ferriere <pferriere@hotmail.com>

See Also

Other res: textatopics

textaDetectLanguages Detects the languages used in documents.

Description

This function returns the language detected in a sentence or documents along with a confidence
score between 0 and 1. A scores equal to 1 indicates 100

Internally, this function invokes the Microsoft Cognitive Services Text Analytics REST API docu-
mented at https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation.

You MUST have a valid Microsoft Cognitive Services account and an API key for this function
to work properly. See https://www.microsoft.com/cognitive-services/en-us/pricing for
details.

Usage

textaDetectLanguages(documents, numberOfLanguagesToDetect = 1L)

Arguments

documents (character vector) Vector of sentences or documents on which to perform lan-
guage detection.

numberOfLanguagesToDetect

(integer) Number of languages to detect. Set to 1 by default. Use a higher value
if individual documents contain a mix of languages.

https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation
https://www.microsoft.com/cognitive-services/en-us/pricing

6 textaDetectLanguages

Value

An S3 object of the class texta. The results are stored in the results dataframe inside this object.
The dataframe contains the original sentences or documents, the name of the detected language,
the ISO 639-1 code of the detected language, and a confidence score. If an error occurred during
processing, the dataframe will also have an error column that describes the error.

Author(s)

Phil Ferriere <pferriere@hotmail.com>

Examples

Not run:

docsText <- c(
"The Louvre or the Louvre Museum is the world's largest museum.",
"Le musee du Louvre est un musee d'art et d'antiquites situe au centre de Paris.",
"El Museo del Louvre es el museo nacional de Francia.",
"Il Museo del Louvre a Parigi, in Francia, e uno dei piu celebri musei del mondo.",
"Der Louvre ist ein Museum in Paris."

)

tryCatch({

Detect languages used in documents
docsLanguage <- textaDetectLanguages(

documents = docsText, # Input sentences or documents
numberOfLanguagesToDetect = 1L # Number of languages to detect

)

Class and structure of docsLanguage
class(docsLanguage)
#> [1] "texta"
str(docsLanguage, max.level = 1)
#> List of 3
#> $ results:'data.frame': 5 obs. of 4 variables:

#> $ json : chr "{\"documents\":[{\"id\":\"B6e4C\",\"detectedLanguages\": __truncated__ }]}
#> $ request:List of 7
#> ..- attr(*, "class")= chr "request"
#> - attr(*, "class")= chr "texta"

Print results
docsLanguage

#> texta [https://westus.api.cognitive.microsoft.com/text/analytics/v2.0/lan __truncated__]
#>
#> ---
#> text name iso6391Name score
#> ----------------------------- ------- ------------- -------
#> The Louvre or the Louvre English en 1
#> Museum is the world's largest
#> museum.
#>

textaDetectTopics 7

#> Le musee du Louvre est un French fr 1
#> musee d'art et d'antiquites
#> situe au centre de Paris.
#>
#> El Museo del Louvre es el Spanish es 1
#> museo nacional de Francia.
#>
#> Il Museo del Louvre a Parigi, Italian it 1
#> in Francia, e uno dei piu
#> celebri musei del mondo.
#>
#> Der Louvre ist ein Museum in German de 1
#> Paris.
#> ---

}, error = function(err) {

Print error
geterrmessage()

})

End(Not run)

textaDetectTopics Detects the top topics in a group of text documents.

Description

This function returns the top detected topics for a list of submitted text documents. A topic is
identified with a key phrase, which can be one or more related words. At least 100 text documents
must be submitted, however this API is designed to detect topics across hundreds to thousands of
documents. For best performance, limit each document to a short, human written text paragraph
such as review, conversation or user feedback.

English is the only language supported at this time.

You can provide a list of stop words to control which words or documents are filtered out. You can
also supply a list of topics to exclude from the response. Finally, you can also provide min/max
word frequency count thresholds to exclude rare/ubiquitous document topics.

We recommend using the textaDetectTopics function in synchronous mode, in which case it will
return only after topic detection has completed. If you decide to call this function in asynchronous
mode, you will need to call the textaDetectTopicsStatus function periodically yourself until the
Microsoft Cognitive Services server complete topic detection and results become available.

IMPORTANT NOTE: If you’re calling textaDetectTopics in synchronous mode within the
R console REPL (interactive mode), it will appear as if the console has hanged. This is EX-
PECTED. The function hasn’t crashed. It is simply in "sleep mode", activating itself period-
ically and then going back to sleep, until the results have become available. In sleep mode,
even though it appears "stuck", textaDetectTopics dodesn’t use any CPU resources. While

8 textaDetectTopics

the function is operating in sleep mode, you WILL NOT be able to use the console until the
function completes. If need to operate the console while topic detection is being performed by
the Microsoft Cognitive services servers, you should call textaDetectTopics in asynchronous
mode and then call textaDetectTopicsStatus yourself repeteadly afterwards, until results
are available.
Note that one transaction is charged per text document submitted.

Internally, this function invokes the Microsoft Cognitive Services Text Analytics REST API docu-
mented at https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation.

You MUST have a valid Microsoft Cognitive Services account and an API key for this function
to work properly. See https://www.microsoft.com/cognitive-services/en-us/pricing for
details.

Usage

textaDetectTopics(documents, stopWords = NULL, topicsToExclude = NULL,
minDocumentsPerWord = NULL, maxDocumentsPerWord = NULL,
resultsPollInterval = 30L, resultsTimeout = 1200L, verbose = FALSE)

Arguments

documents (character vector) Vector of sentences or documents on which to perform topic
detection. At least 100 text documents must be submitted. English is the only
language supported at this time.

stopWords (character vector) Vector of stop words to ignore while performing topic detec-
tion (optional)

topicsToExclude

(character vector) Vector of topics to exclude from the response (optional)
minDocumentsPerWord

(integer) Words that occur in less than this many documents are ignored. Use
this parameter to help exclude rare document topics. Omit to let the service
choose appropriate value. (optional)

maxDocumentsPerWord

(integer) Words that occur in more than this many documents are ignored. Use
this parameter to help exclude ubiquitous document topics. Omit to let the ser-
vice choose appropriate value. (optional)

resultsPollInterval

(integer) Interval (in seconds) at which this function will query the Microsoft
Cognitive Services servers for results (optional, default: 30L). If set to 0L, this
function will return immediately and you will have to call textaDetectTopicsStatus
periodically to collect results. If set to a non-zero integer value, this function will
only return after all results have been collected. It does so by repeatedly calling
textaDetectTopicsStatus on its own until topic detection has completed. In
the latter case, you do not need to call textaDetectTopicsStatus.

resultsTimeout (integer) Interval (in seconds) at which point this function will give up and stop
querying the Microsoft Cognitive Services servers for results (optional, default:
1200L). As soon as all results are available, this function will return them to
the caller. If the Microsoft Cognitive Services servers within resultsTimeout

https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation
https://www.microsoft.com/cognitive-services/en-us/pricing

textaDetectTopics 9

seconds, this function will stop polling the servers and return the most current
results.

verbose (logical) If set to TRUE, print every poll status to stdout.

Value

An S3 object of the class textatopics. The results are stored in the results dataframes inside this
object. See textatopics for details. In the synchronous case (i.e., the function only returns after
completion), the dataframes contain the documents, the topics, and which topics are assigned to
which documents. In the asynchonous case (i.e., the function returns immediately), the dataframes
contain the documents, their unique identifiers, their current operation status code, but they don’t
contain the topics yet, nor their assignments. To get the topics and their assignments, you must call
textaDetectTopicsStatus until the Microsoft Services servers have completed topic detection.

Author(s)

Phil Ferriere <pferriere@hotmail.com>

Examples

Not run:
load("./data/yelpChineseRestaurantReviews.rda")
set.seed(1234)
documents <- sample(yelpChReviews$text, 1000)

tryCatch({

Detect top topics in group of documents
topics <- textaDetectTopics(

documents, # At least 100 documents (English only)
stopWords = NULL, # Stop word list (optional)
topicsToExclude = NULL, # Topics to exclude (optional)
minDocumentsPerWord = NULL, # Threshold to exclude rare topics (optional)
maxDocumentsPerWord = NULL, # Threshold to exclude ubiquitous topics (optional)
resultsPollInterval = 30L, # Poll interval (in s, default:30s, use 0L for async)
resultsTimeout = 1200L, # Give up timeout (in s, default: 1200s = 20mn)
verbose = TRUE # If set to TRUE, print every poll status to stdout

)

Class and structure of topics
class(topics)
#> [1] "textatopics"

str(topics, max.level = 1)
#> List of 8
#> $ status : chr "Succeeded"
#> $ operationId : chr "30334a3e1e28406a80566bb76ff04884"
#> $ operationType : chr "topics"
#> $ documents :'data.frame': 1000 obs. of 2 variables:
#> $ topics :'data.frame': 71 obs. of 3 variables:
#> $ topicAssignments:'data.frame': 502 obs. of 3 variables:

10 textaDetectTopicsStatus

#> $ json : chr "{\"status\":\"Succeeded\",\"createdDateTime\": __truncated__ }
#> $ request :List of 7
#> ..- attr(*, "class")= chr "request"
#> - attr(*, "class")= chr "textatopics"

Print results
topics

#> textatopics [https://westus.api.cognitive.microsoft.com/text/analytics/ __truncated__]
#> status: Succeeded
#> operationId: 30334a3e1e28406a80566bb76ff04884
#> operationType: topics
#> topics (first 20):
#> ------------------------
#> keyPhrase score
#> ---------------- -------
#> portions 35
#> noodle soup 30
#> vegetables 20
#> tofu 19
#> garlic 17
#> Eggplant 15
#> Pad 15
#> combo 13
#> Beef Noodle Soup 13
#> House 12
#> entree 12
#> wontons 12
#> Pei Wei 12
#> mongolian beef 11
#> crab 11
#> Panda 11
#> bean 10
#> dumplings 9
#> veggies 9
#> decor 9
#> ------------------------

}, error = function(err) {

Print error
geterrmessage()

})

End(Not run)

textaDetectTopicsStatus

Retrieves the status of a topic detection operation submitted for pro-
cessing.

textaDetectTopicsStatus 11

Description

This function retrieves the status of an asynchronous topic detection operation previously submitted
for processing. If the operation has reached a ’Succeeded’ state, this function will also return the
results.

Internally, this function invokes the Microsoft Cognitive Services Text Analytics REST API docu-
mented at https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation.

You MUST have a valid Microsoft Cognitive Services account and an API key for this function
to work properly. See https://www.microsoft.com/cognitive-services/en-us/pricing for
details.

Usage

textaDetectTopicsStatus(operation, verbose = FALSE)

Arguments

operation (textatopics) textatopics S3 object returned by the original call to textaDetectTopics.

verbose (logical) If set to TRUE, print poll status to stdout.

Value

An S3 object of the class textatopics with the results of the topic detection operation. See
textatopics for details.

Author(s)

Phil Ferriere <pferriere@hotmail.com>

Examples

Not run:
load("./data/yelpChineseRestaurantReviews.rda")
set.seed(1234)
documents <- sample(yelpChReviews$text, 1000)

tryCatch({

Start async topic detection
operation <- textaDetectTopics(

documents, # At least 100 docs/sentences
stopWords = NULL, # Stop word list (optional)
topicsToExclude = NULL, # Topics to exclude (optional)
minDocumentsPerWord = NULL, # Threshold to exclude rare topics (optional)
maxDocumentsPerWord = NULL, # Threshold to exclude ubiquitous topics (optional)
resultsPollInterval = 0L # Poll interval (in s, default: 30s, use 0L for async)

)

Poll the servers until the work completes or until we time out
resultsPollInterval <- 60L
resultsTimeout <- 1200L

https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation
https://www.microsoft.com/cognitive-services/en-us/pricing

12 textaDetectTopicsStatus

startTime <- Sys.time()
endTime <- startTime + resultsTimeout

while (Sys.time() <= endTime) {
sleepTime <- startTime + resultsPollInterval - Sys.time()
if (sleepTime > 0)

Sys.sleep(sleepTime)
startTime <- Sys.time()

Poll for results
topics <- textaDetectTopicsStatus(operation)
if (topics$status != "NotStarted" && topics$status != "Running")

break;
}

Class and structure of topics
class(topics)
#> [1] "textatopics"

str(topics, max.level = 1)
#> List of 8
#> $ status : chr "Succeeded"
#> $ operationId : chr "30334a3e1e28406a80566bb76ff04884"
#> $ operationType : chr "topics"
#> $ documents :'data.frame': 1000 obs. of 2 variables:
#> $ topics :'data.frame': 71 obs. of 3 variables:
#> $ topicAssignments:'data.frame': 502 obs. of 3 variables:
#> $ json : chr "{\"status\":\"Succeeded\",\"createdDateTime\": __truncated__ }
#> $ request :List of 7
#> ..- attr(*, "class")= chr "request"
#> - attr(*, "class")= chr "textatopics"

Print results
topics

#> textatopics [https://westus.api.cognitive.microsoft.com/text/analytics/ __truncated__]
#> status: Succeeded
#> operationId: 30334a3e1e28406a80566bb76ff04884
#> operationType: topics
#> topics (first 20):
#> ------------------------
#> keyPhrase score
#> ---------------- -------
#> portions 35
#> noodle soup 30
#> vegetables 20
#> tofu 19
#> garlic 17
#> Eggplant 15
#> Pad 15
#> combo 13
#> Beef Noodle Soup 13
#> House 12
#> entree 12

textaInit 13

#> wontons 12
#> Pei Wei 12
#> mongolian beef 11
#> crab 11
#> Panda 11
#> bean 10
#> dumplings 9
#> veggies 9
#> decor 9
#> ------------------------

}, error = function(err) {

Print error
geterrmessage()

})

End(Not run)

textaInit Initializes the mscstexta4r package.

Description

This function initializes the Microsoft Cognitive Services Text Analytics REST API key and URL
by reading them either from a configuration file or environment variables.

This function MUST be called right after package load and before calling any mscstexta4r core
functions, or these functions will fail.

The textaInit configuration function will first check to see if the variable MSCS_TEXTANALYTICS_CONFIG_FILE
exists in the system environment. If it does, the package will use that as the path to the configuration
file.

If MSCS_TEXTANALYTICS_CONFIG_FILE doesn’t exist, it will look for the file .mscskeys.json
in the current user’s home directory (that’s ~/.mscskeys.json on Linux, and something like
C:/Users/Phil/Documents/.mscskeys.json on Windows). If the file is found, the package will
load the API key and URL from it.

If using a file, please make sure it has the following structure:

{
"textanalyticsurl": "https://westus.api.cognitive.microsoft.com/texta/analytics/v2.0/",
"textanalyticskey": "...MSCS Text Analytics API key goes here..."

}

If no configuration file is found, textaInit will attempt to pick up its configuration information
from two Sys env variables instead:

MSCS_TEXTANALYTICS_URL - the URL for the Text Analytics REST API.

MSCS_TEXTANALYTICS_KEY - your personal Text Analytics REST API key.

textaInit needs to be called only once, after package load.

14 textaKeyPhrases

Usage

textaInit()

Author(s)

Phil Ferriere <pferriere@hotmail.com>

Examples

Not run:
textaInit()

End(Not run)

textaKeyPhrases Returns the key talking points in sentences or documents.

Description

This function returns the the key talking points in a list of sentences or documents. The following
languages are currently supported: English, German, Spanish and Japanese.

Internally, this function invokes the Microsoft Cognitive Services Text Analytics REST API docu-
mented at https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation.

You MUST have a valid Microsoft Cognitive Services account and an API key for this function
to work properly. See https://www.microsoft.com/cognitive-services/en-us/pricing for
details.

Usage

textaKeyPhrases(documents, languages = rep("en", length(documents)))

Arguments

documents (character vector) Vector of sentences or documents for which to extract key
talking points.

languages (character vector) Languages of the sentences or documents, supported values:
"en"(English, default), "de"(German), "es"(Spanish), "fr"(French), "ja"(Japanese)

Value

An S3 object of the class texta. The results are stored in the results dataframe inside this object.
The dataframe contains the original sentences or documents and their key talking points. If an error
occurred during processing, the dataframe will also have an error column that describes the error.

Author(s)

Phil Ferriere <pferriere@hotmail.com>

https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation
https://www.microsoft.com/cognitive-services/en-us/pricing

textaKeyPhrases 15

Examples

Not run:

docsText <- c(
"Loved the food, service and atmosphere! We'll definitely be back.",
"Very good food, reasonable prices, excellent service.",
"It was a great restaurant.",
"If steak is what you want, this is the place.",
"The atmosphere is pretty bad but the food is quite good.",
"The food is quite good but the atmosphere is pretty bad.",
"I'm not sure I would come back to this restaurant.",
"The food wasn't very good.",
"While the food was good the service was a disappointment.",
"I was very disappointed with both the service and my entree."

)
docsLanguage <- rep("en", length(docsText))

tryCatch({

Get key talking points in documents
docsKeyPhrases <- textaKeyPhrases(

documents = docsText, # Input sentences or documents
languages = docsLanguage
"en"(English, default)|"de"(German)|"es"(Spanish)|"fr"(French)|"ja"(Japanese)

)

Class and structure of docsKeyPhrases
class(docsKeyPhrases)
#> [1] "texta"
str(docsKeyPhrases, max.level = 1)
#> List of 3
#> $ results:'data.frame': 10 obs. of 2 variables:

#> $ json : chr "{\"documents\":[{\"keyPhrases\":[\"atmosphere\",\"food\", __truncated__]}]}
#> $ request:List of 7
#> ..- attr(*, "class")= chr "request"
#> - attr(*, "class")= chr "texta"

Print results
docsKeyPhrases
#> texta [https://westus.api.cognitive.microsoft.com/text/analytics/v2.0/keyPhrases]
#>
#> ---
#> text keyPhrases
#> ------------------------------ ----------------------------
#> Loved the food, service and atmosphere, food, service
#> atmosphere! We'll definitely
#> be back.
#>
#> Very good food, reasonable reasonable prices, good food
#> prices, excellent service.
#>
#> It was a great restaurant. great restaurant

16 textaSentiment

#>
#> If steak is what you want, steak, place
#> this is the place.
#>
#> The atmosphere is pretty bad atmosphere, food
#> but the food is quite good.
#>
#> The food is quite good but the food, atmosphere
#> atmosphere is pretty bad.
#>
#> I'm not sure I would come back restaurant
#> to this restaurant.
#>
#> The food wasn't very good. food
#>
#> While the food was good the service, food
#> service was a disappointment.
#>
#> I was very disappointed with service, entree
#> both the service and my
#> entree.
#> ---

}, error = function(err) {

Print error
geterrmessage()

})

End(Not run)

textaSentiment Assesses the sentiment of sentences or documents.

Description

This function returns a numeric score between 0 and 1 with scores close to 1 indicating positive
sentiment and scores close to 0 indicating negative sentiment.

Sentiment score is generated using classification techniques. The input features of the classifier in-
clude n-grams, features generated from part-of-speech tags, and word embeddings. English, French,
Spanish and Portuguese text are supported.

Internally, this function invokes the Microsoft Cognitive Services Text Analytics REST API docu-
mented at https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation.

You MUST have a valid Microsoft Cognitive Services account and an API key for this function
to work properly. See https://www.microsoft.com/cognitive-services/en-us/pricing for
details.

https://www.microsoft.com/cognitive-services/en-us/text-analytics/documentation
https://www.microsoft.com/cognitive-services/en-us/pricing

textaSentiment 17

Usage

textaSentiment(documents, languages = rep("en", length(documents)))

Arguments

documents (character vector) Vector of sentences or documents for which to assess senti-
ment.

languages (character vector) Languages of the sentences or documents, supported values:
"en"(English, default), "es"(Spanish), "fr"(French), "pt"(Portuguese)

Value

An S3 object of the class texta. The results are stored in the results dataframe inside this object.
The dataframe contains the original sentences or documents and their sentiment score. If an error
occurred during processing, the dataframe will also have an error column that describes the error.

Author(s)

Phil Ferriere <pferriere@hotmail.com>

Examples

Not run:

docsText <- c(
"Loved the food, service and atmosphere! We'll definitely be back.",
"Very good food, reasonable prices, excellent service.",
"It was a great restaurant.",
"If steak is what you want, this is the place.",
"The atmosphere is pretty bad but the food is quite good.",
"The food is quite good but the atmosphere is pretty bad.",
"I'm not sure I would come back to this restaurant.",
"The food wasn't very good.",
"While the food was good the service was a disappointment.",
"I was very disappointed with both the service and my entree."

)
docsLanguage <- rep("en", length(docsText))

tryCatch({

Perform sentiment analysis
docsSentiment <- textaSentiment(

documents = docsText, # Input sentences or documents
languages = docsLanguage
"en"(English, default)|"es"(Spanish)|"fr"(French)|"pt"(Portuguese)

)

Class and structure of docsSentiment
class(docsSentiment)
#> [1] "texta"
str(docsSentiment, max.level = 1)

18 textaSentiment

#> List of 3
#> $ results:'data.frame': 10 obs. of 2 variables:

#> $ json : chr "{\"documents\":[{\"score\":0.9903013,\"id\":\"hDgKc\", __truncated__ }]}
#> $ request:List of 7
#> ..- attr(*, "class")= chr "request"
#> - attr(*, "class")= chr "texta"

Print results
docsSentiment
#> texta [https://westus.api.cognitive.microsoft.com/text/analytics/v2.0/sentiment]
#>
#> --------------------------------------
#> text score
#> ------------------------------ -------
#> Loved the food, service and 0.9847
#> atmosphere! We'll definitely
#> be back.
#>
#> Very good food, reasonable 0.9831
#> prices, excellent service.
#>
#> It was a great restaurant. 0.9306
#>
#> If steak is what you want, 0.8014
#> this is the place.
#>
#> The atmosphere is pretty bad 0.4998
#> but the food is quite good.
#>
#> The food is quite good but the 0.475
#> atmosphere is pretty bad.
#>
#> I'm not sure I would come back 0.2857
#> to this restaurant.
#>
#> The food wasn't very good. 0.1877
#>
#> While the food was good the 0.08727
#> service was a disappointment.
#>
#> I was very disappointed with 0.01877
#> both the service and my
#> entree.
#> --------------------------------------

}, error = function(err) {

Print error
geterrmessage()

})

End(Not run)

textatopics 19

textatopics The textatopics object

Description

The textatopics object exposes formatted results for the textaDetectTopics API, this REST
API’s JSON response, and the HTTP request:

• status the operation’s current status ("NotStarted"|"Running"|"Succeeded"|"Failed")

• documents a data.frame with the documents and a unique string ID for each

• topics a data.frame with the identified topics, a unique string ID for each, and a prevalence
score for each topic (count of documents assigned to topic)

• topicAssignments a data.frame with all the topics (identified by their topic ID) assigned to
each document (identified by their document ID), and a distance score for each topic assign-
ment (between 0 and 1; the lower the distance score the stronger the topic affiliation)

• json the REST API JSON response

• request the HTTP request

Author(s)

Phil Ferriere <pferriere@hotmail.com>

See Also

Other res: texta

Index

∗ package
mscstexta4r, 2

mscstexta4r, 2
mscstexta4r-package (mscstexta4r), 2

texta, 4, 5, 6, 14, 17, 19
textaDetectLanguages, 2, 5
textaDetectTopics, 2–4, 7, 7, 8, 11, 19
textaDetectTopicsStatus, 2–4, 7–9, 10
textaInit, 2, 3, 13, 13
textaKeyPhrases, 2, 14
textaSentiment, 2, 16
textatopics, 4, 5, 9, 11, 19

20

	mscstexta4r
	texta
	textaDetectLanguages
	textaDetectTopics
	textaDetectTopicsStatus
	textaInit
	textaKeyPhrases
	textaSentiment
	textatopics
	Index

